Mark scheme - Oscillations

Qı	Questio n		Answer/Indicative content	Mark	Guidance
	n			S	Examiner's Comments
1			D	1	The correct formula here is $v_{max} = A\omega$. This means that to find the angular frequency, ω , you must divide the maximum speed by the amplitude. The amplitude is given in centimetres so that needs to be converted to metres. This gives 24/0.056 = 429 rad s ⁻¹ , giving the answer D.
			Total	1	
2			В	1	Examiner's Comments The damping force is always opposite in direction to velocity. If the displacement is zero, then the speed is greatest and hence the damping force is also greatest in magnitude. The damping force is not always opposite in direction to acceleration, although the displacement must be, according to the definition of SHM.
			Total	1	
3			Α	1	
			Total	1	
4			В	1	
			Total	1	
5			В	1	Examiner's Comments In SHM, when x = 0, the object is moving at its fastest and so has maximum KE. This in turn means that the PE must be minimum, eliminating option D. The speed of the object slightly away from the point where x=0 does not increase rapidly nor linearly. This only leaves option B.
			Total	1	
6			В	1	
			Total	1	
7			Α	1	<u>Examiner's Comments</u> About three quarters of all candidates recognised that since = $-\omega^2 2$, the

				angular frequency of this motion was 5. Also, since $\omega = 2\pi f$, the frequency must be equal to 5/(2π).
		Total	1	
8		В	1	
		Total	1	
9		В	1	
		Total	1	
1 0		A	1	
		Total	1	
1 1		С	1	
		Total	1	
1 2		Maximum energy is transferred between tower (driver) and sphere when sphere (driven) is at/close to the natural frequency <u>of the tower</u> or in this forced oscillation/resonance situation	B1 B1	allow causes maximum damping <u>of the tower</u> or maximum amplitude <u>of</u> <u>the sphere/</u> AW allow AW e.g. sphere must be driven close to/at the natural/resonance frequency <u>of the tower</u> <u>Examiner's Comments</u> The answers gave a clear indication as to how well the candidates understood a resonance situation. Many omitted to explain which of the three oscillating elements were acting as drivers and which were driven. The candidate who wrote the answer (exemplar 3) shown here has some understanding of the situation but has failed to communicate it clearly to the reader. Exemplar 3 <u>becurse</u> <u>Mescurrent</u> <u>Mescurrent</u> <u>in resorent</u> <u>which is</u> <u>when Mescurrent</u> <u>in resorent</u> <u>in produced when Mescurrent</u> <u>in resorent</u> <u>which is</u> <u>when Mescurrent</u> <u>in resorent</u> <u>in the under</u> <u>in resorent</u> <u>in maximum driving</u> <u>in 0 : Upt 1 = Becomps</u> <u>in another under</u> <u>in a some under</u> <u>in a large amplitude or absorbed by the dampers.</u> Hence the maximum amount of energy.
		Total	2	
1 3	а	Resultant force from springs is proportional to displacement from centre or acceleration (of mass) is	B1	

5.3 Oscillations

			proportional to displacement from centre.		
			Directed to centre or fixed point.	B1	
	b		Graph correct shape and always positive and suitable scale on kinetic energy axis.	B1	
			Maxima occur at zero displacement times.	B1	
	с	i	Period from graph = 500/3.5 = 143 ms	C1	
		i	Acceleration = $\omega^2 A = (2\pi/0.143)^2$ × 0.006 = 12 (ms ⁻²)	A1	
		ii	$\begin{aligned} KE &= 0.5 \times 0.005 \times (2\pi / 0.143 \times \\ 0.006)^2 \end{aligned}$	C1	
		ii	KE = 1.7 × 10 ⁻⁴ (J)	A1	
			Total	8	
1 4			Force the mass to oscillate with a periodic force. (AW)	B1	
			The mass oscillates at maximum amplitude when the forcing frequency is equal to the natural frequency of the spring-mass system. (AW)	B1	
			Total	2	
					ω mark can be implicit in calculation
1 5			$ω = (2πf =) 2π × 0.15 \text{ or } 0.3π (= 0.942 \text{ rad s}^{-1})$ $a_{max} = (-ω^2A =) 4π^2t^2A = 0.050$ $A = 0.05/(2π × 0.15)^2$ $A = 5.6 × 10^{-2} (m)$	C1 C1 A1	$ω^2$ = 0.88 or 0.89 using 0.942 or 0.94 allow 0.057 (m); N.B. answer is 0.053 if use ω instead of $ω^2$ mark as a TE max 2/3 Examiner's Comments The words <i>simple harmonic motion</i> in the text pointed almost all candidates to use the correct formula. The angular frequency was calculated correctly. Two common errors were to forget to square the
					value or to give the final answer to only one significant figure rather than a minimum of two.
			Total	3	
			$a_{\max} = -\omega^2 A$ or $a_{\max} = -(2\pi f)^2 A$	C1	Allow without the minus sign
1 6			ω = 2 × π × 5.0 × 10 ⁸ = 3.1(4) × 10 ⁹ (rad s ⁻¹) or 10 ⁹ π	C1	ECF from (a) Not 4.0 × $10^{12}\pi^2$
			a_{max} (= $\pi^2 \times 10^{18} \times 4.0 \times 10^{-6}$) = 3.9 × 10 ¹³ (m s ⁻²)	A1	Examiner's Comments

				The words 'simple harmonic motion' in the text prompted almost all candidates to use the correct formula here.
		Total	3	
1 7	i	Correct substitution of $T= 2(.0 \text{ s})$ into $T^2 = \frac{4\pi^2}{g}L$ length = 0.99 (m)	C1 A1	Note: 1 (m) here cannot score this A1 mark Examiner's Comments A large majority of candidates successfully showed that the pendulum length should be 0.99m for a 'tick' length of 1.0 seconds. Candidates that attempted the reverse argument, by assuming a length of 1 m and then calculating the corresponding length, were usually unable to show the period of the resulting pendulum was 2.01s. Candidates that showed how to arrive at this period gained full credit.
	ï	Lower <i>g</i> / gravitational field strength / acceleration (of free fall) on Moon. <i>T</i> is longer (on Moon) and justified by $T^2 = \frac{4\pi^2}{g}L$ or $T^2 \propto 1/g$ or $\frac{4\pi^2}{g}$ is larger	B1 B1	Accept 'g is a sixth of g on Earth' AW Not gravity (is less) Examiner's Comments Many candidates suggested that <i>g</i> is less on the Moon than it is on the Earth, gaining one mark of credit. Most candidates suggested that would mean the period of the pendulum would be larger, but did so without justification from the formula in the question or contradicted themselves by stating that would make the pendulum 'run faster'.
		Total	4	
1 8	i	Using the graph to determine at least two ratios of the amplitudes.	M1	For example: 2.5/3.0 and 2.1/2.5
	i	Correct statement matching the ratios.	A1	For example: 'The statement is correct because 2.5/3.0 \approx 2.1/2.5 \approx constant. '
	ii	At time $t = 0$	M1	
	ii	Oscillator has maximum speed and hence the greatest friction. (AW)	A1	
		Total	4	
1 9		EPE decreases (from bottom to top) GPE increases (from bottom to top)	B1 B1 B1 B1	Not EPE becomes 0 (or negative) Allow for the first two marking points: description that refers to total potential energy starts at maximum, is minimum at equilibrium point and max again at top, provided total potential energy is stated to be the sum of EPE and GPE

	KE starts at zero, finishes at zero		Allow as alternative for first three marks:
	and max at equilibrium point.		EPE to KE and GPE in bottom half
			EPE and KE to GPE in top half
			EPE at start to GPE at top
	Air gains thermal energy / Total		
	energy (of mass and spring)		
	decreases over time		Examiner's Comments
			The best way to answer this question is to plan out what happens to
			each of the relevant energy types. Exemplar 4 starts off well yet is
			insufficient. Exemplar 5 is far clearer.
			In this case the relevant energy types are elastic potential, gravitational
			potential and kinetic energy. Candidates often carefully recalled the details of energy changes for a horizontal mass-spring system, which
			was incorrect.
			was incorrect.
			Earlier in the question, the candidates were told that the spring is
			always under tension. This means that the elastic potential energy
			cannot be zero or indeed negative.
			At the bottom and the top of the motion, the kinetic energy of the system
			is zero, as the objects have zero velocity. At the equilibrium position, the
			kinetic energy of the system is maximum.
			Responses that included merely 'potential energy' were too vague,
			unless it was clear that the potential energy of this system is the sum of
			both the gravitational and elastic potential energies.
			Exemplar 4
			Describe the energy changes that will take place as the mass moves from the lowest point in
			its motion through the equilibrium position to the highest point in its motion. A.E., Burtst. point. there. 18. maximum classia, potential anargy
			Ak hlepisti polat II. han maximum gravitational potentidi. Augus During Inbetween laast, and hispost point Gee Nincht covergy
			DILAND MALYES, IND COSEC. LANCH ANTHON FACH
			The first 2 statements in this response are true yet not enough. The
			third statement is untrue, as it implies that GPE is decreasing (and so
			contradicts the second statement) and also states that the elastic
			potential energy is increasing. Zero marks.
			Exemplar 5
			Describe the energy changes that will take place as the mass moves from the lowest point in its motion through the equilibrium position to the highest point in its motion.
			KE Kinetic energy - Increase grun O & wes
			gren kuest & kullissing, decrease back to O
			Grantelien P.E Incruss gen kurt E
			Elister P.F Derpere and but to
			This response is separated out into the 3 main energy types. The
			changes for each of the types is correct. The only thing they haven't
			mentioned is that the total energy of the system will decrease because
			of the damping effect of the air. 3 marks.
	Total	4	

5.3 Oscillations

		1	
20	Accept any sensible and successful method. Stroboscope: Any two from • Use of stroboscope of known frequency or period • Photograph to capture several positions on one picture • Measure displacement from centre using a scale put behind the mass.	B1 × 2	Video camera with freeze frame facility, where time between frames is known. Apply marking points as for the stroboscope.
	 Motion sensor: Any two from Motion sensor connected to data logger which sends information on displacement and time to computer. Sensor placed close to moving mass to eliminate reflections from other objects. Small reflector attached to mass. 	2	
	 Safeguards to ensure accuracy Stroboscope: Any two from Use frequency such that positions of mass are close together on photograph. distance scale close to oscillating mass or camera set back from mass to reduce parallax. Camera should be directed at equilibrium point or at 90° to oscillation. Or Motion sensor: Any two from Any attached reflector should not cause damping. Motion sensor directed along line of oscillation or motion sensor signal blocked by supports so 	B1 × 2	

		must be as near to line of oscillation as possible.Use thin supports to reduce reflections.		
		Total	4	
2 1	i	5 (mm).	A1	
	ii	1.0 mark on scale at peak of curve.	B1	minimum requirement for mark: 0 to 3 Hz marked at 1 Hz intervals along axis.
	iii	approx. same (or slightly lower) resonance frequency.	B1	
	iii	smaller amplitude/broader peak <i>but</i> <i>curves must not cross</i> and passes through (0, 5 mm).	B1	
		Total	4	
		$ω^2 = k/m$ or $(2πf)^2 = k/m$ or $kA = ma_{max}$ k =(m4π ² f ²) = 6.6 × 10 ⁵ × (2π × 2.45) ²	C1 M1	
2 2	i	0.15) ² or (<i>k</i> = <i>ma_{max}</i> / A) = 6.6 × 10 ⁵ × 0.05/0.056		allow ω or $\omega^2 = 0.88$ or 0.89 quoted from (a) ecf value of A from (a) as this is a 'show that' question some definite evidence of working must be shown. not $k = 6 \times 10^5$ allow answer to 2 or more SF.
		<i>k</i> = 5.9 × 10 ⁵ (N m ⁻¹)	A1	not $k = 6 \times 10^{\circ}$ allow answer to 2 or more SF.
	ii	$E = \frac{1}{2}kA^{2} = = 0.5 \times 5.9 \times 10^{5} \times 0.71^{2}$ E = 1.5 × 10 ⁵ (J)	C1 A1	allow value from (c)(i) or 6; or a = (k/m)A , F = ma, E = $\frac{1}{2}FA$ accept 1.48 to 1.51 or value from ecf special case: give 1/2 for E = 3(.0) × 10 ⁵ (J) where it is clear that 2k has been used as the spring constant <u>Examiner's Comments</u> The exercise in this section completed successfully by most candidates was to perform standard calculations stating correct formulae and showing clear working to determine the required quantities. The example (exemplar 4) shown here is of a typical neat script. The most common error was to forget to square quantities in part (ii) or to use the amplitude calculated part (a) rather than the figure given in the stem of this part.
				Exemplar 4

					$ \begin{aligned} \Theta &= -\frac{\omega}{m} \propto \frac{0.05}{0.056} \times (6.64e^{5}) \times k \\ \Theta \cdot 0.5 &= -\frac{\omega}{(6.64e^{5})} (0.056) \\ \omega &= 5.394 \times 10^{5} \\ \lambda &\approx 641e^{5} N_{M}e^{-1} \\ &= 1 \\ W &= 2\pi f \qquad 0.056 \\ \omega &= 2\pi f \qquad 0$
			Total	5	
2 3	а	i	$a = -\omega^2 x$ seen Suitable linking $a = -\omega^2 x$ and either $\omega = 2 \pi f$ or $\omega = 2 \pi / T$ with substitution f = 1.41 (Hz)	B1 M1 A1	e.g. 4π ² f ² = 78.3 or f = sqrt(3.6/4π ² x 4.6 x 10 ⁻²) or f=8.85/2π or T=0.71 Allow f = 1.408 (Hz)
		ï	$A = \frac{x}{\cos \omega t} \text{or } A = \frac{4.6 \times 10^{-2}}{\cos(2 \times \pi \times 1.4 \times 6.5)} \text{ subjec}$ t) A = 0.057 (m)	M1 A1	Not: sine for cosine. Note $A = 0.090(4)(m)$ if 1.41 used Note $A = 0.0796$ (m) if 1.408 used Allow 1 mark for cosine used with calculator in degrees Examiner's Comments As the mass is pulled down before release, the mass is away from the equilibrium position. This means that the sine relationship between displacement and time cannot be correct. Many candidates got this idea correct. The relationship $x = A \cos(\omega t)$ requires that the value of ωt is expressed in radians. This meant that to calculate the amplitude correctly, the calculator has to be in radians mode, rather than degrees mode.
	b	i	(Smooth) curve showing amplitude increases and then decreases maximum at 1.4 Hz by eye	B1 B1	Not: more than 1 peak Allow: asymptote instead of peak <u>Examiner's Comments</u>

				The correct shape for Question $18(c)(i)$ is a standard resonance curve. The natural frequency of this system is 1.4 Hz, as stated in Question $18(a)$. This means that the peak of the curve should come at 1.4 Hz.
				The curve for Question 18(c) needed to be of lower amplitude throughout the frequency range (not including at 0 Hz). Some candidates put the peak of curve D at the same frequency as curve K and others put the peak of curve D slightly to the left. Both were given the mark.
				Allow: curve without shifted peak i.e. peak at 1.4 Hz ECF their K curve
				Examiner's Comments
	ii	Curve similar shape yet lower at all non-zero f points with peak shifted slightly to <u>left</u> (of 1.4 Hz)	B1	The correct shape for Question 18(c)(i) is a standard resonance curve. The natural frequency of this system is 1.4 Hz, as stated in Question 18(a). This means that the peak of the curve should come at 1.4 Hz.
				The curve for Question 18(c) needed to be of lower amplitude throughout the frequency range (not including at 0 Hz). Some candidates put the peak of curve D at the same frequency as curve K and others put the peak of curve D slightly to the left. Both were given the mark.
		Bridge close to <u>resonance</u> if frequency of driver is close to		Allow: footfall/people walking/wind for driver Allow: <u>resonance</u> (occurs) when frequency of driving force is at natural frequency of bridge
		natural frequency of bridge		Allow: Maximum for larger
	iii		B1 B1	Examiner's Comments
		(Close to resonance) giving larger amplitude which causes damage or other named consequence		Many candidates linked the possibility of a driving force, such as footsteps or the wind, giving a driver frequency at or near the natural frequency of a bridge and that this phenomenon is known as resonance. The second mark was for a link of the resonance idea of maximum amplitude to a consequence, such as a bridge shaking itself apart or being too unstable for use.
		Total	10	
		$\omega^2 = g/L$ $\omega = \frac{2\pi}{T}$	M1	
2 4	i	Correct substitution $\frac{4\pi^2}{T^2} = \frac{g}{L}$ and	M1	Note: Both M1 marks are required to score this A1 mark
		rearranging to give correct expression	A1	Examiner's Comments Most students had considerable success in deriving the required expression.
	ii	Transfer of energy to air / retort stand (because of air resistance /	B1	Allow 'loss of energy from pendulum (due to friction)' Allow 'work done' for 'energy'

		friction)		
		No effect on T (as T is independent of amplitude in SHM for small amplitude oscillations of pendulum)	B1	Allow 'isochronous' Examiner's Comments A pleasingly large proportion of students remembered that specification point 5.3.1 (f) states that the period of a simple harmonic oscillator is independent of its amplitude. A similarly large proportion referred to damping or action of the drag force but fell slightly short of the idea that the effect of that force is to reduce the energy stored in the pendulum.
		Total	5	
2 5	i	ω = 2π × 1.2	C1	
	i	$(a_{max} = \omega^2 A); a_{max} = [2\pi \times 1.2]^2 \times 3.0 \times 10^{-2}$	C1	
	i	maximum acceleration = 1.7 (m s ⁻²)	A1	
	ii	Correct curve with peak of greater amplitude.	B1	
	ii	Peak slightly right of first curve.	B1	Allow graph peaking at 1.2 (Hz)
		Total	5	
2 6		Level 3 (5–6 marks) Clear description including steps to obtain high quality data and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear description and some analysis There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1–2 marks) Limited description and analysis Or limited description The information is basic and communicated in an unstructured way.	B1 × 6	Indicative scientific points may include: Experiment Description • Pendulum string clamped / fixed (can be shown on diagram) • Use a stopwatch to determine time period T • Use a stopwatch to determine time period T • Time multiple oscillations to determine T • Use a ruler to measure L • Vary length L and determine T Quality of Data • Method used to ensure small oscillations • Small angles i.e. <10 degrees

			The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		 Correct plotting of graph, e.g. <i>T</i>² against <i>L</i> or <i>T</i> against √<i>L</i> or lg <i>T</i> against lgL Analysis of data table showing T²/L = constant Expect a straight line through the <u>origin</u> Correct gradient of the line e.g. 4π²/g Use only L1, L2 and L3 in RM Assessor. Examiner's Comments While a small number of candidates described the incorrect experiment (such as masses on a spring or circular motion) most candidates made excellent attempts to describe the experiment and the ensuing analysis. References to even the most basic equipment are essential, such as measuring lengths with a ruler and periods of time with a stopwatch or other suitable timer. Candidates that did neither could not score higher than Level 1. Level 3 responses included ideas about achieving high quality data, such as use of a fiducial mark, starting the oscillation count (and hence the timer) at the midpoint where the pendulum bob is fastest, stating a suitable small angle of ten degrees or less and how to achieve that consistently with a protractor and by measuring the length of the string from the suspension point to the centre of the bob. By far the preferred method of analysis leading to verification of the relationship was plotting a graph of T² against L and expecting the trend to be not only straight but also through the origin with a gradient of (4π²/g). Note that writing 'Plot a graph of T²/L' is not an acceptable short hand for 'plot T² on the y-axis and L on the x-axis.
			Total	6	
2 7	а	i	a = (-) 4π ² f ² x = 4 × 9.87 × 4900 × 0.004	C1	allow 774 (m s ⁻²)
		i	a = 770 (m s⁻²)	A1	
		ii	1 sketch showing one wavelength and 140 (Hz)	B1	both sketch and value required for 1 mark
		ii	2 driving force is around nodal point / AW;	B1	max 3 of the 4 marking points
		ii	points either side of nodal point try to move in opposite directions when force in one direction / AW;	B1	
		ii	move magnet to antinodal point; ¼ of distance between clamps	B1	not increase current

5.3 Oscillations

	Ι.				
	b	i	$f \alpha \sqrt{T}$ so f = 70/ $\sqrt{2}$ = 49 or 50 Hz	B1	
		ii	1 μ increases / goes up by 0.4%	B1	allow +0.4% NOT 0.4%
		ii	2 0.2%,	B1	or half of answer to (ii)1
		ii	f is lower because μ is bigger and μ is on the bottom of the formula	B1	or greater inertia present with same restoring force / other physical argument
			Total	10	
2 8		i	$a = 4\pi^2 f^2 \times$	C1	condition for SHM
		i	so k = $(m4n^2f^2) = 1.7 \times 10^{-27} \times 4 \times 9.87 \times 43.7 \times 10^{26}$	B1	substitution
		i	k = 292 (N m ⁻¹)	A1	ecf if incorrect mass used
		ii	(N2 gives) $F_H = m_H a_H$ and $F_I = m_I a_I$	B1	allow total momentum = 0 at all times
		ii	(N3 gives) $F_H = F_I$ can be implicit	B1	SHM gives ν = 2πfx _{max}
		ii	SHM gives a α (−)x	B1	so m _H X _H = m _I x _I
		ii	hence x _H /x _l = a _H /a _l = m _l /m _H = 127	B1	accept 127 = x _H /x _I ≈ 10/0.08 = 125
			Total	7	
2			$x = A \cos (\omega t)$ or $x = A \cos (2\pi f t)$	C1	Note : Treat use of sine as TE
9		i	x = 2.0 cos (2π × 1.4 × 0.60) displacement = 1.1 (cm)	C1 A1	Note answer is 1.07 (cm) to 3SF Note answer if calculator left in degrees of 1.99cm scores 2 marks.
			$(v_{max} =) 2\pi \times 1.4 \times 0.02$	C1	
		ii	maximum speed = 0.18 (m s ⁻¹)	A1	
		iii	1 Larger (amplitude)	B1	
			2 Same (period)	B1	
			Total	7	
3 0	а		$3.6 \pm 0.4 \ (m^2 \ s^{-2})$	B1	
	b	i	Data point and error bar correctly plotted	B1	Allow ecf from previous part.
		ii	* Level 3 (5–6 marks) Detailed analysis of the graph clearly linked to the principle of conservation of energy, including determination of the value of <i>g</i> and	B1 × 6	Explanation 1. Principle of conservation of energy used to derive relationship. 2. $mgh = \frac{1}{2} mv^2$ or $v^2 = 2gh$

	the related uncertainty in the answer.There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.Level 2 (3–4 marks)Analysis of the graph linked to kinetic energy and / or potential energy, with an attempt to find the value of g. Mention of where one would find uncertainties in the answer but without analysis.There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.Level 1 (1–2 marks)Line of best fit drawn and gradient attempted. Mention of energy and / or where uncertainties may occur.The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.	 A graph of v² against <i>h</i> will be a straight line (through the origin). Gradient of line = 2<i>g</i>. Determination Line of best fit drawn through all data points. Gradient in the range 17 to 21 (m² s⁻²). <i>g</i> determined correctly from the gradient. Uncertainty Worst line of fit drawn. Correct attempt to determine the uncertainty.
	0 marks No response or no response worthy of credit.	
	Total	8
3 i	sin or cos wave with 1.5 wavelengths (between C and R) y-axis showing scale, i.e. (amplitude) 2.(0) × 10 ⁻⁶ (m) correct scale on x-axis showing λ = 0.2 (m) X and Y labelled at adjacent intercepts on x-axis	unit must be present, e.g 10 ⁻⁶ m B1 NOT if axis labelled time B1 Examiner's Comments B1 Most candidates correctly labelled the scale on the displacement axis of B1 Most candidates correctly labelled the scale on the displacement axis of B1 the sinusoidal graph that they drew. The points where the air particles were moving the fastest were also well known. Fewer labelled <i>distance</i> on the x-axis, many incorrectly writing <i>time</i> . Only the better candidates marked the correct scale on this axis and very few indicated that there were 1.5 wavelengths between the points C and R.

	$v = A\omega \text{ or } 2\pi fA$ $v = (2 \times 10^{-6} \times 2 \times 3.14 \times 1.7 \times 10^{3} =)$ $2.1 \times 10^{-2} \text{ (m s}^{-1}.)$ $\frac{1}{2}Mv^{2} = 3/2 \text{ RT and T} = 290$ $2 v = \sqrt{(3 \times 8.31 \times 290 / 0.029)}$ $v = 5(.0) \times 10^{2} \text{ (m s}^{-1}.)$ Total	C1 A1 A1	or $\frac{1}{2}mv^2 = 3/2$ kT so $v^2 = 3$ (k / m) 290 N.B. remember to record a mark out of 4 here Examiner's Comments Answers were generally well structured into two sections, one for each experiment. A few candidates thought they could measure the wavelength on the oscilloscope screen. In experiment (a) most understood that the phase difference between the two oscillations at the microphone changed as one speaker was moved away. Explanations often muddled <i>path</i> and <i>phase</i> difference or referred to <i>nodes</i> and <i>antinodes</i> detected by the microphone. Some candidates misinterpreted the experiment moving the microphone to detect interference fringes, allowing the double slits formula to be used to find the wavelength. Others thought that Doppler shift was applicable. For experiment (b) many candidates used <i>maxima</i> and <i>minima</i> in place of <i>antinodes</i> and <i>nodes</i> although most recognised this to be a <i>standing</i> wave situation. Quite a few candidates ignored the instruction about reducing the uncertainty. The best candidates suggested reducing the frequency to reduce the percentage uncertainty in the wavelength measurement.
--	--	----------------	---