Mark scheme-Oscillations

				angular frequency of this motion was 5 . Also, since $\omega=2 \pi f$, the frequency must be equal to $5 /(2 \pi)$.
		Total	1	
8		B	1	
		Total	1	
9		B	1	
		Total	1	
1		A	1	
		Total	1	
1		C	1	
		Total	1	
		Maximum energy is transferred between tower (driver) and sphere when sphere (driven) is at/close to the natural frequency of the tower or in this forced oscillation/resonance situation	B1 B1	allow causes maximum damping of the tower or maximum amplitude of the sphere/AW allow AW e.g. sphere must be driven close to/at the natural/resonance frequency of the tower Examiner's Comments The answers gave a clear indication as to how well the candidates understood a resonance situation. Many omitted to explain which of the three oscillating elements were acting as drivers and which were driven. The candidate who wrote the answer (exemplar 3) shown here has some understanding of the situation but has failed to communicate it clearly to the reader. Exemplar 3 becorse the no vexinciun amphtwiun in Sthe produced when the system in resorve. whrein is when the watural thequeven is equal to the drinim trequency and the uoth trequely is $0.25 \mathrm{t}=$ so resshent when dinisy trea $=0$ The ball was often quoted as just acting against the tower to reduce the amplitude rather than using the clue at the end of the initial paragraph about the energy drawn from the tower being absorbed by the dampers. Hence the requirement for the ball to be given a large amplitude or absorb the maximum amount of energy.
		Total	2	
1 3	a	Resultant force from springs is proportional to displacement from centre or acceleration (of mass) is	B1	

KE starts at zero, finishes at zero and max at equilibrium point.

Air gains thermal energy / Total energy (of mass and spring) decreases over time

Allow as alternative for first three marks:
EPE to KE and GPE in bottom half
EPE and KE to GPE in top half
EPE at start to GPE at top

Examiner's Comments

The best way to answer this question is to plan out what happens to each of the relevant energy types. Exemplar 4 starts off well yet is insufficient. Exemplar 5 is far clearer.

In this case the relevant energy types are elastic potential, gravitational potential and kinetic energy. Candidates often carefully recalled the details of energy changes for a horizontal mass-spring system, which was incorrect.

Earlier in the question, the candidates were told that the spring is always under tension. This means that the elastic potential energy cannot be zero or indeed negative.

At the bottom and the top of the motion, the kinetic energy of the system is zero, as the objects have zero velocity. At the equilibrium position, the kinetic energy of the system is maximum.

Responses that included merely 'potential energy' were too vague, unless it was clear that the potential energy of this system is the sum of both the gravitational and elastic potential energies.

Exemplar 4

Describe the energy changes. that will take place as the mass moves from the lowest point in
its motion through the equilibrium position to the highest point in its motion
its motion through the equilibrium.position to the highest point.in its motion.
At lowst point there ss mosinuus elestic patential energy
At highest polit. It has maximum gravitattomat potentiol oneng
During inbetween louest and highest proint GPE \rightarrow Kinetricenengy.
which enanges into elastic podential.
The first 2 statements in this response are true yet not enough. The third statement is untrue, as it implies that GPE is decreasing (and so contradicts the second statement) and also states that the elastic potential energy is increasing. Zero marks.

Exemplar 5

Describe the energy changes that will take place as the mass moves from the lowest point in
its motion through the equilibrium position to the highest point in its motion.
KE Kinetic enerpy - Increase gran O) en nue gran kuest (crequillbrium, decreuse bade to 0 gron equilbhium to haphest
Grankeluand PE-Iurecta fran kiest 6 Inchest po At

This response is separated out into the 3 main energy types. The changes for each of the types is correct. The only thing they haven't mentioned is that the total energy of the system will decrease because of the damping effect of the air. 3 marks.

		$\begin{array}{l}\text { Accept any sensible and successful } \\ \text { method. }\end{array}$

Stroboscope: Any two from

- Use of stroboscope of known frequency or period
- Photograph to capture several positions on one picture
- Measure displacement from centre using a scale put behind the mass.
or
Motion sensor: Any two from
- Motion sensor connected to data logger which sends information on displacement and time to computer.
- Sensor placed close to moving mass to eliminate reflections from other objects.
- Small reflector attached to mass.

Safeguards to ensure accuracy
Stroboscope: Any two from

- Use frequency such that positions of mass are close together on photograph.
- distance scale close to oscillating mass or camera set back from mass to reduce parallax.
- Camera should be directed at equilibrium point or at 90° to oscillation.
or
Motion sensor: Any two from
- Any attached reflector should not cause damping.
- Motion sensor directed along line of oscillation or motion sensor signal blocked by supports so known. Apply marking points as for the stroboscope.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
must be as near to line of oscillation as possible. \\
- Use thin supports to reduce reflections.
\end{tabular} \& \& \\
\hline \& \& Total \& 4 \& \\
\hline \[
2
\] \& i \& \(5(\mathrm{~mm})\). \& A1 \& \\
\hline \& ii \& 1.0 mark on scale at peak of curve. \& B1 \& minimum requirement for mark: 0 to 3 Hz marked at 1 Hz intervals along axis. \\
\hline \& iii \& \begin{tabular}{l}
approx. same (or slightly lower) resonance frequency. \\
smaller amplitude/broader peak but curves must not cross and passes through (\(0,5 \mathrm{~mm}\)).
\end{tabular} \& B1
B1 \& \\
\hline \& \& Total \& 4 \& \\
\hline 2 \& i \& \(\omega^{2}=k / m\) or \((2 \pi f)^{2}=k / m\) or \(k A=\) mamax
\[
\begin{aligned}
\& k=\left(m 4 \pi^{2} \mathrm{f}^{2}\right)=6.6 \times 10^{5} \times(2 \pi \times \\
\& 0.15)^{2} \\
\& \text { or }(k=\operatorname{ma} \max / \mathbf{A})=6.6 \times 10^{5} \times \\
\& 0.05 / 0.056
\end{aligned}
\]
\[
k=5.9 \times 10^{5}\left(\mathrm{~N} \mathrm{~m}^{-1}\right)
\] \& C1
M1

A1 \& | allow ω or $\omega^{2}=0.88$ or 0.89 quoted from (a) ecf value of A from (a) as this is a 'show that' question some definite evidence of working must be shown. |
| :--- |
| not $k=6 \times 10^{5}$ allow answer to 2 or more SF. |

\hline \& ii \& \[
$$
\begin{aligned}
& E=1 / 2 k A^{2}==0.5 \times 5.9 \times 10^{5} \times \\
& 0.71^{2} \\
& E=1.5 \times 10^{5}(\mathrm{~J})
\end{aligned}
$$

\] \& C1 \& | allow value from (c)(i) or 6; |
| :--- |
| or $a=(k / m) A, F=m a, E=1 / 2 F A$ |
| accept 1.48 to 1.51 or value from ecf |
| special case: give $1 / 2$ for $E=3(.0) \times 10^{5}(\mathrm{~J})$ where it is clear that 2 k has been used as the spring constant |
| Examiner's Comments |
| The exercise in this section completed successfully by most candidates was to perform standard calculations stating correct formulae and showing clear working to determine the required quantities. The example (exemplar 4) shown here is of a typical neat script. |
| The most common error was to forget to square quantities in part (ii) or to use the amplitude calculated part (a) rather than the figure given in the stem of this part. |
| Exemplar 4 |

\hline
\end{tabular}

5.3 Oscillations

				$\begin{aligned} & a=-\frac{u}{m} x \quad \frac{0.05}{0.056} \times\left(6.6 \times 10^{5}\right): k \\ & 0.05=-\frac{k}{\left(6.610^{5}\right)}(0.056) \quad \begin{array}{l} k=5.89 \times 10^{5} \\ \\ k \approx 6 \times 10^{5} \mathrm{Nm}^{-1} \end{array} \end{aligned}$ $\begin{array}{ll} \omega=2 \pi f & \frac{0.050}{(0.30 \pi)^{2}}=x \\ \omega=0.30 \pi & x=0.056 \\ a=-\omega^{2} x & x \end{array}$ maximum displacement = . 0.056 m [3] $\begin{aligned} & E=\frac{1}{2} h x^{2} \quad \text { My volve of h } \\ & E=\frac{1}{2}\left(5.89 \times 10^{5}\right)(0.71)^{2} \\ & E=148529.46 \\ & E=1.49 \times 10^{5} \text { energy transferred }=\ldots .1 .49 \times 10^{\mathrm{s}} \end{aligned}$
		Total	5	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	a	$a=-\omega^{2} x \text { seen }$ Suitable linking $a=-\omega^{2} x$ and either $\omega=2 \pi f$ or $\omega=2 \pi / T$ with substitution $f=1.41(\mathrm{~Hz})$	B1 M1 A1	e.g. $4 \pi^{2} f^{2}=78.3$ or $\mathrm{f}=\operatorname{sqrt}\left(3.6 / 4 \pi^{2} \times 4.6 \times 10^{-2}\right)$ or $\mathrm{f}=8.85 / 2 \pi$ or $\mathrm{T}=0.71 \ldots$ Allow $\mathrm{f}=1.408 \ldots(\mathrm{~Hz})$
		$\text { ii } \begin{aligned} & A=\frac{x}{\cos \omega t} \text { ol } A=\frac{4.6 \times 10^{-2}}{\cos (2 \times \pi \times 1.4 \times 6.1} \text { (Any } \text { t) } \\ & A=0.057(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Not: sine for cosine. Note $A=0.090(4)(\mathrm{m})$ if 1.41 used Note $A=0.0796(\mathrm{~m})$ if 1.408 used Allow 1 mark for cosine used with calculator in degrees Examiner's Comments As the mass is pulled down before release, the mass is away from the equilibrium position. This means that the sine relationship between displacement and time cannot be correct. Many candidates got this idea correct. The relationship $x=A \cos (\omega t)$ requires that the value of ωt is expressed in radians. This meant that to calculate the amplitude correctly, the calculator has to be in radians mode, rather than degrees mode.
	b	(Smooth) curve showing amplitude increases and then decreases maximum at 1.4 Hz by eye	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	Not: more than 1 peak Allow: asymptote instead of peak Examiner's Comments

		friction) No effect on T (as T is independent of amplitude in SHM for small amplitude oscillations of pendulum)	B1	Allow 'isochronous' Examiner's Comments A pleasingly large proportion of students remembered that specification point 5.3.1 (f) states that the period of a simple harmonic oscillator is independent of its amplitude. A similarly large proportion referred to damping or action of the drag force but fell slightly short of the idea that the effect of that force is to reduce the energy stored in the pendulum.
		Total	5	
2	i	$\begin{aligned} & \omega=2 \pi \times 1.2 \\ & \left(a_{\max }=\omega^{2} A\right) ; a_{\max }=[2 \pi \times 1.2]^{2} \times \\ & 3.0 \times 10^{-2} \\ & \text { maximum acceleration }=1.7(\mathrm{~m} \\ & \left.\mathrm{s}^{-2}\right) \end{aligned}$	C1 C1 A1	
	ii	Correct curve with peak of greater amplitude. Peak slightly right of first curve.	B1 B1	Allow graph peaking at $1.2(\mathrm{~Hz})$
		Total	5	
2		Level 3 (5-6 marks) Clear description including steps to obtain high quality data and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description and some analysis There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description and analysis Or limited description The information is basic and communicated in an unstructured way.	$\begin{gathered} \text { B1 } \times \\ 6 \end{gathered}$	Indicative scientific points may include: Experiment Description - Pendulum string clamped / fixed (can be shown on diagram) - Use a stopwatch to determine time period T - Time multiple oscillations to determine T - Use a ruler to measure L - Vary length L and determine T Quality of Data - Method used to ensure small oscillations - Small angles i.e. <10 degrees - Idea of fiducial mark - Start / stop timing at the centre of the oscillation - Measure from the fixed point to the centre of the bob Analysis

	b	i	$f a \sqrt{ } \mathrm{~T}$ so $\mathrm{f}=70 / \sqrt{ } 2=49$ or 50 Hz	B1		
		ii	1μ increases / goes up by 0.4% 2 0.2\%, f is lower because μ is bigger and μ is on the bottom of the formula	B1 B1 B1	allow +0.4\% NOT 0.4\%	
		or half of answer to (ii)1				
		or greater inertia present with same restoring force / other physical argument				
				Total	10	
$\begin{array}{\|l} 2 \\ 8 \end{array}$			i	$a=4 \pi^{2} f^{2} \times$$\begin{aligned} & \text { so } k=\left(m 4 n^{2} f^{2}\right)=1.7 \times 10^{-27} \times 4 \times \\ & 9.87 \times 43.7 \times 10^{26} \\ & k=292\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 B1 A1	condition for SHM
		i	substitution			
		i	ecf if incorrect mass used			
		iiiiiiii	(N2 gives) $\mathrm{F}_{\mathrm{H}}=$ тнан and $\mathrm{F}_{\mathrm{I}}=$ mıa (N3 gives) $\mathrm{F}_{\mathrm{H}}=\mathrm{F}_{\mathrm{I}}$ can be implicit SHM gives a $\alpha(-) x$ hence $x_{H} / x_{I}=a_{H} / a_{I}=m_{l} / m_{H}=127$	B1 B1 B1 B1	allow total momentum $=0$ at all times	
					SHM gives $\mathrm{v}=2 \mathrm{nf} \mathrm{X}_{\text {max }}$	
					so $\mathrm{m}_{H} \mathrm{X}_{\mathrm{H}}=\mathrm{m}_{1 \times 1}$	
					accept $127=x_{H} / \mathrm{x}_{1} \approx 10 / 0.08=125$	
			Total	7		
$\begin{aligned} & 2 \\ & 9 \end{aligned}$		i	$\begin{aligned} & \begin{array}{l} x=A \cos \quad \text { or } x=A \cos (2 \pi f t) \\ (\omega t) \end{array} \\ & x=2.0 \cos (2 \pi \times 1.4 \times 0.60) \\ & \text { displacement }=1.1(\mathrm{~cm}) \end{aligned}$	C1 C1 A1	Note : Treat use of sine as TE Note answer is 1.07 (cm) to 3SF Note answer if calculator left in degrees of 1.99 cm scores 2 marks.	
		ii	$\left(v_{\max }=\right) 2 \pi \times 1.4 \times 0.02$ maximum speed $=0.18\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	C1 A1		
		iii	1 Larger (amplitude) 2 Same (period)	B1 B1		
			Total	7		
3	a		$3.6 \pm 0.4\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$	B1		
	b	i	Data point and error bar correctly plotted	B1	Allow ecf from previous part.	
		ii	* Level 3 (5-6 marks) Detailed analysis of the graph clearly linked to the principle of conservation of energy, including determination of the value of g and	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Explanation 1. Principle of conservation of energy used to derive relationship. 2. $m g h=1 / 2 m v^{2}$ or $v^{2}=2 g h$	

5.3 Oscillations

(|l|l|l|l|

